33言情 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

会议室中,徐川从樊鹏越手中接过笔记本,翻阅着里面的数据资料。

摸索出超低温超导铜碳银复合材料的研究员叫‘宋文柏’,是从武理大学那边挖过来的一名教授,之前主要研究领域是材料化学。

这次这位宋教授能摸索到超低温超导材料,半分靠经验,半分靠运气。

他并没有走传统材料学的粉末冶金法,也没有走研究超导体材料常用的高温高压合成法来研究铜碳银复合超导材料,而是取用了纳米材料制备和分子修饰的发展路线。

他先通过纳米手段制备铜碳银复合材料,然后再通过气相沉积的方式来对细微的原子结构进行操控调整。

和常规制备铜碳银复合材料的粉末冶金法相比,这种新手段解决了铜和碳的界面结合不牢,复合材料中存在大量孔洞的问题。

而相对于高温高压的超导体研究手法来说,也避免了铜原子与碳原子即使在高温下不发生反应,润湿性极差的缺点。

不得不说,在材料研究领域能够在国内大学排到前五的武理大学,还是有些本事的。

一名中等偏上,不算顶尖的材料化学方面的教授,在构思新材料的研发方面,有着充足的经验和应对手段。

若要说缺点的话,那就是在二维薄膜沉积的过程中,使用了粘结剂,即便是只是微量的粘接剂这在一定程度上破坏了铜碳银复合材料本身的纯粹性。

这不仅意味着它需要更低的温度,才能使得这种薄膜材料达到超导能隙。也意味着材料本身的性能大幅度降低。

......

“有点意思,打个电话给这位宋教授,问问他现在有时间没有,如果有的话,请他过来一趟,我有点问题想咨询一下他。”

翻阅完电脑中的资料后,徐川感兴趣的抬起了头,手指在桌上轻轻的敲了敲,朝着樊鹏越说道。

老实来,这份超低温超导铜碳银复合材料本身的价值,其实并不是那么大。

首先这位宋教授研究出来的材料是二维薄膜结构,要将其加工成导线或者其他形状的超导材料难度还很大。

其次是在43.5K(大约-230摄氏度)的温度下做到超导,外面其实早就已经有了。

比如CERN的大型强粒子对撞机.

对粒子进行加速需要超强的磁场,而强磁场需要超导材料才能做到极限。

LHC粒子对撞机使用的就是铌锡合金,通过液氦进行冷却后,这种材料已经做到了能在常压环境中超导,且能批量生产。

而抛开低温超导来说,高温超导其实也早有研究。

早在1987年的时候,华国、米国、小岛国等国家的科学家就都发现‘钡-钇-铜氧化物’处于液氮温区具备了Tc,从而有了超导电性。

(Tc指的是临界温度,是材料从正常态转变为超导态的温度。比如水银,当温度稍低于4.2K时,汞的电阻突然消失,表现出超导状态,所以水银的Tc是4.2K,约零下268.95摄氏度。)

但受限于铜氧化物超导体像很脆的陶瓷材料,你无法把它们拉成细线,再加上制造成本很高,稍有杂质污染即失效等问题,高温超导一直无法应用于工业上。

所以单单是43.5K的温度超导,并没有什么太大的实用价值。

它不仅需要液氦冷冻才能超导,还没法工业化生产。

不过,他在这份资料中找到了一些很有意思的东西。

如果能弄清楚的话,说不定能从另一个角度解释一下高温超导材料的超导基理。

要知道超导材料的高温超导基理,别说是现在的2020年初了,就是再过十几年,在后世都没有找到真正的解释。

哪怕是他在后世研究出来了常温超导材料,也没能做到解释常温高温超导体存在的原因。

如果是在其他领域,这几乎是一件不可能或者说极难的事情。

理论未成型,实际成果又如何能做出来?

但在材料学领域,没有理论却实验碰巧撞出来成果再普通不过了。

如今社会上使用的很多材料,其实都是先有成果,而后再研究成果获得理论的。

如果能解释清楚高温超温超导材料的超导基理,这对于超导材料的发展来说,绝对是一个巨大的提升。

........

樊鹏越点了点头,从口袋中摸出手机打了个电话,询问了一下后挂断了电话。

没等多久,会议室外,敲门声响起。

徐川开口道:“请进。”

随即,大门推开,一名带着金边眼镜的中年男子走了进来。

“樊总,您找我?”

宋文柏走进来询问道,目光却落到了坐在办公桌边的徐川身上。

熟悉的身影让他不由自主的愣了一下,半疑半信的开口问道:“您是徐院士?”

当初川海材料研究所挖他的时候,他就知道这家实验室背后的真正主人是那位大名鼎鼎的徐川徐教授。

他认出来了徐川,但是又有点怀疑是不是真的。

因为从入职到现在,别说他了,川海材料研究所大部分的人都没有见到过这位真正的老板。

所以这会即便是看到了真人,都有些怀疑自己是不是看错了。

对面,樊鹏越看向徐川,笑着说道:“你说你,甩手掌柜做久了,公司员工都不认识你了。”

本小章还未完~.~,请点击下一页继续阅读后面精彩内容!

喜欢大国院士请大家收藏:(www.33yanq.com)大国院士33言情更新速度全网最快。

33言情推荐阅读: 豺狼陷阱:第二次世界大战主要悍将重返1999激昂年代农门娇娘:首辅撩我生崽崽我在大楚斩妖邪我有一个修仙世界心灵主宰全球神祇:我的信徒是赛亚人神话图鉴:我能抽取天赋斗罗世界的巫师姑娘不必设防,我是瞎子碧落天刀我真不是除念师穿进赘婿爽文,我却是恶毒前妻世子他暗恋我多年大秦有盛世从熊猫开始的无敌进化天命第一仙武动乾坤之火祖恋爱要猛,结婚要宠:先婚后爱反派团子在八零吾弟大秦第一纨绔觉醒吧!纹星师大人龙族:从战神5归来的路明非全球灾难:我能升级奖励霍格沃茨毒舌神奇动物学家成长史智人盛世小相公我靠女帝系统攻略反派大佬从华山剑奴开始,签到十年港综:大佬擎天柱,我只想揾正行将门嫡女当自强诸天:从射雕开始求道西游之我成了玉帝的妹夫凡人之从夺舍曲魂开始怕被点名的我被迫成了仙帝诸天从圆梦师开始穿越之财富神话折芙蓉:守寡重生后被奸臣娇养了天牢:开局签到镇狱魔体诸天:开局拜师小龙女精灵:初始宝可梦是亚古兽错婚试爱病娇惹不起诡秘:求职之旅海贼:我的二舅是黄猿篮坛:从神经刀开始玄幻:开局拥有百亿黄金四合院:霸道的人生逃荒:我靠千亿物资娇养战神残王文字成神:快逃,这个玩家太恐怖水浒话事人
33言情搜藏榜: 趁女兄弟青涩,忽悠她给我生孩子这本小说很健康汉语禁咒:一声核爆,诸神黄昏无限副本:我在逃生游戏当病娇以后,我想做个好人将门嫡女当自强斗罗:什么双生武魂?我双重人格重回八零:美娇妻开启宠夫剧本斗罗:从俘获小桃学姐开始无敌天师大婚:道教婚书,震惊全网!我的傀儡都是缝合怪三生三世十里桃花心理罪秘档大学毕业,被青梅竹马拉去当声优四合院:谁也别惹我我加载了末日模拟器斗罗之开局觉醒猩红诡眼顶流人生从扑街开始大苍守夜人超能时代穿进赘婿爽文,我却是恶毒前妻娇养黑莲花反派后我成了白月光消失的罪痕秦朝神仙生活斗罗:霍雨浩重生,让神界飞影视:新奇体验官裁决之镰正注视着你港综从瘦虎肥龙开始忘川镜我在阳世当阴差退婚后全世界都想追她DND:一个法爷的异界之旅战舰手艺人隔河千里,秦川知夏快穿:疯批女配在火葬场虐疯了快来人,公主的棺材板盖不住了第四天灾:这星战游戏好多韭菜危险浪漫竹马他又穿越了横刀十六国斗破:多子多福,我打造最强家族实锤了!我王莽就是穿越者我和女友穿越了我在仙侠世界破限修行顶流前男友带娃上恋综我意外爆火人在超神,一念通天华娱之来自星星的导演要命!重生后反派摄政王又凶又奶诸天:从射雕开始求道混在奥特之正经人谁当光之战士
33言情最新小说: 红旗招展的岁月光阴之外天命第一仙海贼之我的搭档是艾斯德斯诸天:从暴风赤红开始不做人了我在九叔世界做大佬我用游戏改变了时间线超人的赛亚人弟弟英雄联盟之千年军阀模拟人生:我为众生开仙路四合院:霸道的人生我靠抽卡征服修真界御前女提刑我能回到神秘时代地球上最后一幢楼江教授宠坏的小祖宗甜翻了港综里劝人善良不当对照组,我上家庭综艺爆红了穿越斗破之开局半圣强者人在综墓,卸岭盗魁库洛牌的魔法使重生80年代霍格沃茨:魔法挽歌我有一口两界钟奶爸学园吞噬进化:我重生成了北极狼怪谈作者拖更日记酒厂倒闭再回家横压诸天万界超凡大谱系我能召唤历史喵重生年代剧:从四合院开始变成幼龙被女团捡到,我震惊全网凡人:我,厉飞雨,属性修仙!狼人杀:请开始你的表演偷星家的假面骑士空我NBA最强队友破产大明星龙族之从挖卡塞尔墙角开始十方乱世,人间武圣!四合院之这不只是四合院穿越之农门长媳成长记推演乐园邪能并不会欺骗你桃花山刘家修仙传四合院之火红的年代黑暗逐光者谍海孤雁我在诡异世界谨慎修仙国子监小厨娘