33言情 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

赵光贵离开,徐川重新将注意放回了之前对磁面撕裂、扭曲模、等离子体磁岛等问题的研究上。

看了眼电脑,之前挂在超算中心运行的模型,除了一部分的数据,但还有大部分都还在处理中。

即便是有超算做辅助,要对高温高密度氘氚等离子体流聚变过程中产生的磁面撕裂效果进行模拟也不是那么容易的。

毕竟数据量实在太大了。

略微的检查了一下模型的运转情况,确认没什么问题后,徐川又拾起了桌上赵光贵之前带过来的数据资料,重新的翻阅了起来。

他对于这种还未命名的新材料相当感兴趣。

毕竟一种能耐三千五百度高温的复合材料,价值是相当惊人的。

哪怕它并不一定能应用在可控核聚变的第一壁材料上,哪怕也有着足够的价值。

除去普通的用作高温耐火材料如磨料、铸模、喷嘴、耐热砖等方面外,耐热材料也可以用作战斗机、火箭等顶级科技的结构元件。

比如米国的航天飞机,最外层的材料就是一层耐高温绝热陶瓷材料。

当然,眼前这种材料肯定达不到这种程度。

因为它有一个重要缺陷,在大部分材料都是碳纳米材料的情况下,它的耐高温属性只能在真空环境下耐高温,使用条件相当苛刻。

这对于可控核聚变来说没什么问题,毕竟反应堆腔室在运行后,本身就处于真空状态。

但对于航天方面来说,问题就很大了。

毕竟绝大部分战斗机、火箭、航天飞机需要用到耐高温材料的区域都是暴露在空气中的。

比如飞机的发动机、火箭和航天飞机的外层绝温材料这些。

当然,如果在这种新材料上覆盖一层耐高温隔绝空气的涂层,它应该可以应用到发动机上面。

只不过涂层的寿命,一般来说都是个很大的问题,尤其是在战斗机发动机这种工作环境极其恶劣的地方。

如果能优化这种新材料的特性,优化里面的碳材料,使其能够做到在常规环境中耐三千度以上的高温,那这种新材料的价值就大了。

不过这并不是一件容易的事情,至少短时间内,他从眼前的数据中找不到什么好的灵感和想法。

当然,这只不过是搂草打兔子,顺带的事情。

相对比优化这种新材料在空气中的耐高温程度,徐川更想做的,是看看能否通过数学,计算出这种新材料能否抗住中子辐照。

通过数学工具和模型来验证一种材料对中子辐照时所受到的辐照损伤并不是不可能的事情。

毕竟要真刀真枪的做中子辐照实验实在是太难了。

其他国家先不说,在国内,有能力和资格做完整中子辐照实验的地方,屈指可数。

一个是大亚湾核裂变发电站,另一个则是位于东广的散裂中子源基地。

前者是利用核裂变本身散发的中子来进行辐照实验,后者则是利用强流质子加速器加速质子撞击钨、铍等金属来制造中子,再进行中子辐照测试。

但无论是哪种,距离真正的氘氚聚变产生的中子,能级都有相当大的差距。

每个氘氚原子核聚变都会产生一个14.1 MeV的中子,尽管放到大型强粒子对撞机中,14.1Mev并不算多高能级。

但要制造出这么高能级的中子,反正目前除了氢弹爆炸和氘氚聚变外,几乎没有其他的途径。

这也是第一壁材料难以研发的原因之一。

没办法做中子辐照实验,但第一壁材料又不可能不研发,于是物理学家联合材料学家、程序员一起搞出来了一种‘核数据处理程序’,其中就包括了‘中子辐照效应’测量。

其实原理很简单,利用的就是中子辐照损伤机理,对中子束与靶材料的碰撞做一个唯像或大数据预测而已。

因为不同中子携带的能量是不同的,比如氘氚聚变过程中的高能中子会携带14.1Mev的能量,会对靶材形成多大破坏,这些都是可以进行推测的。

毕竟在载能中子与靶原子相互作用的过程中,中子首先要与一个晶格原子发生相互作用(即碰撞),然后载能中子才能将能量传递给这个晶格原子,产生一个KPA碰撞原子。

而这个KPA碰撞原子,是否会继续离开原子核、去碰撞下一个原子、传递的能量会损失多少,这些都是有原始记录,可以继续推测的。

只不过这种模拟方式本身就是唯像的,模拟出来的数据多多少少是有‘一点点’不那么靠谱的。

参考他之前针对等离子体湍流建立的唯像数学模型,第一次的实验仅仅勉强做到了45分钟的控制而已。

而在后面获取到准确的实验数据后,针对性的调整优化后,运行时间就推到两小时以上。

从这就可见唯像模型到底有多么的不靠谱了。

但在中子辐照实验方面,也没有其他的办法了。

虽然模拟得到的结果并不一定靠谱。但至少,先利用唯像模型排除一部分的材料,再来做具体的实验总比直接上要好得多。

毕竟抗中子辐照性能检测实验实在太珍贵太难做了,特别是高能级的中子辐照实验,更是难上加难。

.......

将手中的材料数据整合了一下后,徐川将其输入到了计算机中。

材料虽然是新研发出来的,但碳、碳化硅、氧化铪这些元素在中子辐照实验中都是常规物质。

小主,这个章节后面还有哦^.^,请点击下一页继续阅读,后面更精彩!

喜欢大国院士请大家收藏:(www.33yanq.com)大国院士33言情更新速度全网最快。

33言情推荐阅读: 豺狼陷阱:第二次世界大战主要悍将重返1999激昂年代农门娇娘:首辅撩我生崽崽我在大楚斩妖邪我有一个修仙世界心灵主宰全球神祇:我的信徒是赛亚人神话图鉴:我能抽取天赋斗罗世界的巫师姑娘不必设防,我是瞎子碧落天刀我真不是除念师穿进赘婿爽文,我却是恶毒前妻世子他暗恋我多年大秦有盛世从熊猫开始的无敌进化天命第一仙武动乾坤之火祖恋爱要猛,结婚要宠:先婚后爱反派团子在八零吾弟大秦第一纨绔觉醒吧!纹星师大人龙族:从战神5归来的路明非全球灾难:我能升级奖励霍格沃茨毒舌神奇动物学家成长史智人盛世小相公我靠女帝系统攻略反派大佬从华山剑奴开始,签到十年港综:大佬擎天柱,我只想揾正行将门嫡女当自强诸天:从射雕开始求道西游之我成了玉帝的妹夫凡人之从夺舍曲魂开始怕被点名的我被迫成了仙帝诸天从圆梦师开始穿越之财富神话折芙蓉:守寡重生后被奸臣娇养了天牢:开局签到镇狱魔体诸天:开局拜师小龙女精灵:初始宝可梦是亚古兽错婚试爱病娇惹不起诡秘:求职之旅海贼:我的二舅是黄猿篮坛:从神经刀开始玄幻:开局拥有百亿黄金四合院:霸道的人生逃荒:我靠千亿物资娇养战神残王文字成神:快逃,这个玩家太恐怖水浒话事人
33言情搜藏榜: 趁女兄弟青涩,忽悠她给我生孩子这本小说很健康汉语禁咒:一声核爆,诸神黄昏无限副本:我在逃生游戏当病娇以后,我想做个好人将门嫡女当自强斗罗:什么双生武魂?我双重人格重回八零:美娇妻开启宠夫剧本斗罗:从俘获小桃学姐开始无敌天师大婚:道教婚书,震惊全网!我的傀儡都是缝合怪三生三世十里桃花心理罪秘档大学毕业,被青梅竹马拉去当声优四合院:谁也别惹我我加载了末日模拟器斗罗之开局觉醒猩红诡眼顶流人生从扑街开始大苍守夜人超能时代穿进赘婿爽文,我却是恶毒前妻娇养黑莲花反派后我成了白月光消失的罪痕秦朝神仙生活斗罗:霍雨浩重生,让神界飞影视:新奇体验官裁决之镰正注视着你港综从瘦虎肥龙开始忘川镜我在阳世当阴差退婚后全世界都想追她DND:一个法爷的异界之旅战舰手艺人隔河千里,秦川知夏快穿:疯批女配在火葬场虐疯了快来人,公主的棺材板盖不住了第四天灾:这星战游戏好多韭菜危险浪漫竹马他又穿越了横刀十六国斗破:多子多福,我打造最强家族实锤了!我王莽就是穿越者我和女友穿越了我在仙侠世界破限修行顶流前男友带娃上恋综我意外爆火人在超神,一念通天华娱之来自星星的导演要命!重生后反派摄政王又凶又奶诸天:从射雕开始求道混在奥特之正经人谁当光之战士
33言情最新小说: 红旗招展的岁月光阴之外天命第一仙海贼之我的搭档是艾斯德斯诸天:从暴风赤红开始不做人了我在九叔世界做大佬我用游戏改变了时间线超人的赛亚人弟弟英雄联盟之千年军阀模拟人生:我为众生开仙路四合院:霸道的人生我靠抽卡征服修真界御前女提刑我能回到神秘时代地球上最后一幢楼江教授宠坏的小祖宗甜翻了港综里劝人善良不当对照组,我上家庭综艺爆红了穿越斗破之开局半圣强者人在综墓,卸岭盗魁库洛牌的魔法使重生80年代霍格沃茨:魔法挽歌我有一口两界钟奶爸学园吞噬进化:我重生成了北极狼怪谈作者拖更日记酒厂倒闭再回家横压诸天万界超凡大谱系我能召唤历史喵重生年代剧:从四合院开始变成幼龙被女团捡到,我震惊全网凡人:我,厉飞雨,属性修仙!狼人杀:请开始你的表演偷星家的假面骑士空我NBA最强队友破产大明星龙族之从挖卡塞尔墙角开始十方乱世,人间武圣!四合院之这不只是四合院穿越之农门长媳成长记推演乐园邪能并不会欺骗你桃花山刘家修仙传四合院之火红的年代黑暗逐光者谍海孤雁我在诡异世界谨慎修仙国子监小厨娘